011_006 ElGamal-Sign

Koliokviumas: Balandžio 8 d. 17:00-18:30 per Zoom https://imimsociety.net/en/ Prisiregistruoti: Pa VardasKK https://imimsociety.net/en/14-cryptography Uždavinys yra užskaitomas, jeigu paskutiniame žingsnyje jūs paspaudžiate mygtuką [Get Reward] Pastaba: vienu metu perkate tiktai 1 uždavinį ir jį išsprendus perkate kitą.

Cryptography: Information confidentiality, integrity, authenticity & person identification

Symmetric Cryptography ----- Asymmetric Cryptography **Public Key Cryptography**

Symmetric encryption H-functions, Message digest **HMAC H-Message Authentication Code** Asymmetric encryption E-signature - Public Key Infrastructure - PKI E-money, Blockchain E-voting Digital Rights Management - DRM (Marlin) Etc.

Symmetric - Secret Key Encryption - Decryption

Public Key Cryptography - PKC

Principles of Public Key Cryptography

Instead of using single symmetric key shared in advance by the parties for realization of symmetric cryptography, asymmetric cryptography uses two *mathematically* related keys named as private key and public key we denote by **PrK** and **PuK** respectively.

PrK is a secret key owned *personally* by every user of cryptosystem and must be kept secretly. Due

to the great importance of **PrK** secrecy for information security we labeled it in red color. **PuK** is a non-secret *personal* key and it is known for every user of cryptosystem and therefore we labeled it by green color. The loss of **PrK** causes a dramatic consequences comparable with those as losing password or pin code. This means that cryptographic identity of the user is lost. Then, for example, if user has no copy of **PrK** he get no access to his bank account. Moreover his cryptocurrencies are lost forever. If **PrK** is got into the wrong hands, e.g. into adversary hands, then it reveals a way to impersonate the user. Since user's **PuK** is known for everybody then adversary knows his key pair (**PrK**, **Puk**) and can forge his Digital Signature, decrypt messages, get access to the data available to the user (bank account or cryptocurrency account) and etc.

Let function relating key pair (**PrK**, **Puk**) be *F*. Then in most cases of our study (if not declared opposite) this relation is expressed in the following way:

PuK=*F*(**PrK**).

In open cryptography according to Kerchoff principle function F must be known to all users of cryptosystem while security is achieved by secrecy of cryptographic keys. To be more precise to compute **PuK** using function F it must be defined using some parameters named as public parameters we denote by **PP** and color in blue that should be defined at the first step of cryptosystem creation. Since we will start from the cryptosystems based on discrete exponent function then these public parameters are

$\mathbf{PP} = (\boldsymbol{p}, \boldsymbol{g}).$

Notice that relation represents very important cause and consequence relation we name as the direct relation: when given **PrK** we compute **PuK**.

Let us imagine that for given F we can find the inverse relation to compute **PrK** when **PuK** is given. Abstractly this relation can be represented by the inverse function F^{-1} . Then

PrK=*F*⁻¹(**PuK**).

In this case the secrecy of **PrK** is lost with all negative consequences above. To avoid these undesirable consequences function F must be **one-way function** – OWF. In this case informally OWF is defined in the following way:

1. The computation of its direct value **PuK** when **PrK** and **F** in are given is effective.

2. The computation of its inverse value \mathbf{PrK} when \mathbf{PuK} and F are given is infeasible, meaning that to find F^{-1} is infeasible.

The one-wayness of *F* allow us to relate person with his/her **PrK** through the **PuK**. If *F* is 1-to-1, then the pair (**PrK**, **Puk**) is unique. So **PrK** could be reckoned as a unique secret parameter

associated with certain person. This person can declare the possession or **PrK** by sharing his/her **PuK** as his public parameter related with **PrK** and and at the same time not revealing **PrK**.

So, every user in asymmetric cryptography possesses key pair (**PrK**, **PuK**). Therefore, cryptosystems based on asymmetric cryptography are named as **Public Key CryptoSystems** (PKCS).

We will consider the same two traditional (canonical) actors in our study, namely Alice and Bob.

Everybody is having the corresponding key pair (**PrK**_A, **PuK**_A) and (**PrK**_B, **PuK**_B) and are

exchanging with their public keys using open communication channel as indicated in figure below.

Asymmetric - Public Key Cryptography

Message m < p

Asymmetric Signing - Verification Sign(PrK_A , h) = σ = (r, s) V=Ver(PuK_A , h, σ), V \in {True, False} = {1, 0} Asymmetric Encryption - Decryption c=Enc(PuK_A, m) m=Dec(PrK_A, c)

ElGamal Cryptosystem

1.Public Parameters generation $\mathbf{PP} = (\mathbf{p}, \mathbf{g})$.

Generate strong prime number p: >> p=genstrongprime(28) % strong prime of 28 bit length

Find a generator **g** in $Z_p^* = \{1, 2, 3, ..., p-1\}$ using condition. Strong prime p=2q+1, where **q** is prime, then **g** is a generator of Z_P^* iff $g^q \neq 1 \mod p$ and $g^2 \neq 1 \mod p$. Declare **Public Parameters** to the network **PP** = (**p**, **g**);

>> 2^28-1 ans = 2.6844e+08 >> int64(2^28-1) ans = 268435455

PrK = *x* <--- randi ==> **PuK** = *a* = g^x mod p

El-Gamal E-Signature

The **ElGamal signature scheme** is a <u>digital signature</u> scheme which is based on the difficulty of computing <u>discrete logarithms</u>.

It was described by <u>Taher ElGamal</u> in 1984. The ElGamal signature algorithm is rarely used in practice. A variant developed at <u>NSA</u> and known as the <u>Digital Signature Algorithm</u> is much more widely used. The ElGamal signature scheme allows a third-party to confirm the authenticity of a message sent over an insecure channel.

From <<u>https://en.wikipedia.org/wiki/ElGamal_signature_scheme</u>>

EC Gamal sign. -- Digital Signature Alg. (DSA) ~ Elliptic Curve DSA - ECDSA NSÅ Certicom

>> p=int64(genstrongprime(28))

>> p= int64(268435019) p = 268435019 >> g=2 g = 2 >> i=randi(p-1)
i = 1.1728e+08
>> i=int64(randi(p-1))
i = 47250243
>> gcd(i,p-1)
ans = 1
>> i_m1=mulinv(i,p-1)
i_m1 = 172715821
>> mod(i*i_m1,p-1)
ans = 1

 Transaction

 nonce

 gasLimit
 gasPrice

 to
 value

 v
 r
 s

 data
 data

Tx = " nonce Il gastimit Il gastrice Il to Il value Il data"

011 006 ElGamal-Sig-Enc Page 4

1. Compute decimal h-value h=H(M); h < p.

Signature creation for message M >> p.

2. Generate $\gg i = int64(randi(p-1))\%$ such that gcd(i,p-1)=1.

p= 268435019; g=2;

2^28-1= 268,435,455

- 3. Compute $i^{-1} \mod (p-1)$. You can use the function
- >> i_m1=mulinv(i, p-1); >> mod ($i * i_m1, p-1$)=1.
- 4. Compute $r = g^i \mod p$.
- 5. Compute $s = (h xr)i^{-1} \mod (p 1)$.
- 6. Signature on h-value h is $\sigma = (r,s)$ Sign $(r, h) = \sigma = (r, s)$
 - $\operatorname{Sign}(\boldsymbol{x},\boldsymbol{h}) = \boldsymbol{\sigma} = (\boldsymbol{r},\boldsymbol{s}).$

$$h = H(T_x) \longrightarrow G = (r, s) = Sign(PrK, h)$$

1.Signature creation

To sign any finite message M the signer performs the following steps using public parametres **PP**.

- Compute h=H(M).
- Choose a <u>random</u> i such that 1 < i < p 1 and $\underline{gcd}(i, p 1) = 1$.
- Compute $i^{-1} \mod (p-1)$: $i^{-1} \mod (p-1)$ exists if $\underline{gcd}(i, p-1) = 1$, i.e. i and p-1 are relatively prime. $i^{k^{-1}} = 1$ and i^{k^{-1
- Compute **r=gⁱ mod p**
- Compute $s=(h-xr)i^{-1} \mod (p-1) \longrightarrow h=xr+is \mod (p-1)$ Signature $\sigma=(r,s)$ $s=(h-xr)\cdot i^{-1}/i$ $s=(h-xr)\cdot i^{-1}/i$ $h=xr+i\cdot s$ mod p

2.Signature Verification

A signature $\mathbf{\sigma} = (\mathbf{r}, \mathbf{s})$ on message \mathbf{M} is verified using Public Parameters **PP**=(**p**, **g**) and **PuK**_A=**a**.

- 1. Bob computes h=H(M).
- 2. Bob verifies if 1<r<p-1 and 1<s<p-1.

3. Bob calculates $V1=g^h \mod p$ and $V2=a^r r^s \mod p$, and verifies if V1=V2.

The verifier Bob accepts a signature if all **conditions** are satisfied during the signature creation and rejects it otherwise.

3.Correctness

The algorithm is correct in the sense that a **signature generated with the signing algorithm will always be accepted by the verifier**.

The signature generation implies

h=xr+is mod (p-1)

Hence <u>Fermat's little theorem</u> implies that all operations in the exponent are computed mod (p-1)

 $\begin{array}{c} \mathbf{g^h} \text{mod } \mathbf{p} = \mathbf{g^{(xr+is) \mod (p-1)} mod } \mathbf{p} = \mathbf{g^{xr}} \mathbf{g^{is}} = (\mathbf{g^x})^r (\mathbf{g^i})^s = \mathbf{a^r} \mathbf{r^s \mod p} \\ \mathbf{V1} & (a) \quad (r) & \mathbf{V2} \end{array}$

$$PP = (P \circ g)$$

$$So: z \leftarrow randi (P-1) \\ v = g^{z} \mod p$$

$$\begin{cases} \text{Dear JS I am A} \\ \text{and I am sending} \\ \text{Yon my PuK = V} \end{cases} B: Botieves that \\ PuK = V \text{ is ob } ft \\ \text{Yon my PuK = V} \end{cases}$$

$$m = 'Bob \text{ get out'} \\ 6 = Sign(z, m) = (r_{1}S) \qquad \underbrace{m, 6 = (r_{1}S)}_{\text{On m using PuK = V and }} B: verifics the signature G \\ \text{On m using PuK = V and } \\ \text{Voichingtion hasses.} \end{cases}$$

 $0 = Sign(Z, m) = (r_1 >)$

on musing Puk = V and voi fication passes.

Before Bob vorifies any signature with someone Puk he must be sure that this Puk is got from the certain person, c.g. A best not from anybody else.

It is achieved by creation of PKI-Public Key I frastructure when Trusted Third Party (TTP) such as certification Authority is introduced. CA is issuing Puk Certificates for any user by signing Puk when user proves his/her identity to CA.

 $\begin{array}{l} \mathcal{A}: \text{ Identification Card-ID} \\ PrK_A = X; \mathcal{P}_{U}K_A = \alpha. \\ & \downarrow h_A = H(\mathcal{P}_{U}K_A || \text{ Data}_A) \\ & \downarrow h_A = H(\mathcal{P}_{U}K_A || \text{ Data}_A || \text$

Since CA is TTP & S3 can download Pukca using his browser with known to everyone link https:// Certification Authority, Tusted. com https:// Certicom. com

>> p= int64(268435019) p = 268435019 >> g=2; >> x =int64(randi(p-1)) x = 65770603	>> i =int64(randi(p-1)) i = 201156232 >> gcd(i,p-1) ans = 2 >> i =int64(randi(p-1))	>> r=mod_exp(g,i,p) r = 172536234 >> hmxr=mod(h-x*r,p-1) hmxr = 20262153 >> s=mod(hmxr*i_m1,p-1)	>> g_h=mod_exp(g,h,p) g_h = 241198023 >> V1=g_h V1 = 241198023
>> a=mod_exp(g,x,p) a = 232311991 >> M='Hello Bob' M = Hello Bob >> h=hd28(M) h = 150954921	<pre>i = 35395315 >> gcd(i,p-1) ans = 1 >> i_m1=mulinv(i,p-1) i_m1 = 192754179 >> mod(i*i_m1,p-1) ans = 1</pre>	s = 44575091	>> a_r=mod_exp(a,r,p) a_r = 49998673 >> r_s=mod_exp(r,s,p) r_s = 111993804 >> V2=mod(a_r*r_s,p) V2 = 241198023

Till this place

Asymmetric Encryption-Decryption: El-Gamal Encryption-Decryption

p=268435<mark>019</mark>; g=2;

Let message m^{\sim} needs to be encrypted, then it must be encoded in decimal number m: 1 < m < p. E.g. m = 111222. Then $m \mod p = m$.

$$A: \qquad \xrightarrow{PuK_A = \alpha} \quad B: is able to encrypt \\ m to A: \quad m < p$$

D mod *p* computation using Fermat theorem: If *p* is prime, then for any integer *a* holds $a^{p-1} = 1 \mod p$.

$$D^{P-1} = 1 \mod p \quad / \bullet D^{-\times} \mod (p-1) \mod p$$

$$D^{P-1} \cdot D^{\times} = 1 \cdot D^{\times} \mod p \implies D^{P-1-\times} = D^{\times} \mod p$$

$$\overline{D}^{\times} \mod p = D^{P-1-\times} \mod p$$

Correctness

$$E_{nc}(PuK_{A} = a, i, m) = c = (E, D) = (E = m \cdot a^{i} \mod p; D = g^{i} \mod p)$$

$$Dec(PrK_{A} = X, c) = E \cdot D^{i} \mod p = m \cdot a^{i}(g^{i})^{-X} \mod p =$$

$$= m \cdot (g^{X})^{i} \cdot g^{-iX} = m \cdot g^{Xi} \cdot g^{-iX} = m \cdot g^{Xi} \cdot m dp = m \cdot g^{n} dp =$$

$$= m \cdot 1 \mod p = m \mod p = m = 111222$$
Since $m < P$

$$= m \cdot 1 \mod p = m \mod p = rn = \pi 1 222$$

Since $m < p$

If $m > p \rightarrow m \mod p \neq m$; 27 mod $5 = 2 \neq 27$. ASCII: 8 bits per char. If M ; 19 mod <math>31 = 19. Decryption is correct if m < p.

ElGamal encryption is probabilistic: encryption of the same message m two times yields the different cyphertexts C1 and C2. 1-st encryption: 2-nd encryption $i_{1} \leftarrow \operatorname{randi}(\mathcal{Z}_{p}^{*}) \qquad i_{1} \neq i_{2} \qquad i_{2} \leftarrow \operatorname{randi}(\mathcal{Z}_{p}^{*}) \\ E_{1} = (M) \cdot Q^{i_{1}} \mod p \\ C_{1} = (E_{1}, D_{4}) \qquad E_{2} = (M) \cdot Q^{i_{2}} \mod p \\ D_{1} = g^{i_{1}} \mod p \qquad \int C_{1} = (E_{1}, D_{4}) \qquad D_{2} = g^{i_{2}} \mod p \qquad \int C_{2} = (E_{2}, D_{2}) \\ D_{2} = g^{i_{2}} \mod p \qquad \int C_{2} = (E_{2}, D_{2}) \end{cases}$ $C_1 \neq C_2$ Enigma

Necessity of probabilistic encryption.

Encrypting the same message with textbook RSA always yields the same ciphertext, and so we actually obtain that any deterministic scheme must be insecure for multiple encryptions. Tavern episode Enigma

Authenticated Key Agreement Protocol using ElGamal Encryption and Signature. Hybrid encryption for a large files combining asymmetric and symmetric encryption method.

Hybrid encryption. Let *M* be a large finite length file, e.g. of gigabytes length.

Then to encrypt this file using asymmetric encryption is extremely ineffective since we must split it into millions of parts having 2048 bit length and encrypt every part separately.

The solution can be found by using **asymmetric encryption** together with **symmetric encryption**, say AES-128. It is named as **hybrid encryption method**.

For this purpose the **Key Agreement Protocol (KAP)** using **asymmetric encryption** for the same symmetric secret key *k* agreement must be realized and encryption of *M* realized by **symmetric encryption** method, say AES-128.

How to encrypt large data file M: Hybrid enc-dec method.
Proties must agree on common symmetric secret key k.
for symmetric block cipher, e.g. AES-128, 192,256 bits.
ft: Pr-K_A=X; PuK_A=A.

$$PuK_B=b.$$

 $PuK_B=b.$
 $PuK_B=b.$
 $PuK_B=b.$
 $PuK_B=b.$
 $PuK_A=a.$
 $PuK_B=b.$
 $PuK_A=a.$
 PuK

Till this place

1

011_006 ElGamal-Sig-Enc Page 9