Cryptography:
 Information confidentiality, integrity, authenticity \& person identification

Symmetric Cryptography Asymmetric Cryptography Public Key Cryptography

Symmetric encryption
H-functions, Message digest
HMAC H-Message Authentication Code

Asymmetric encryption
E-signature - Public Key Infrastructure - PKI
E-money, Blockchain
E-voting
Digital Rights Management - DRM (Marlin) Etc.

Symmetric - Secret Key Encryption - Decryption

Public Key Cryptography - PKC

Principles of Public Key Cryptography

Instead of using single symmetric key shared in advance by the parties for realization of symmetric cryptography, asymmetric cryptography uses two mathematically related keys named as private key and public key we denote by PrK and PuK respectively.
PrK is a secret key owned personally by every user of cryptosystem and must be kept secretly. Due
to the great importance of PrK secrecy for information security we labeled it in red color. PuK is a non-secret personal key and it is known for every user of cryptosystem and therefore we labeled it by green color. The loss of PrK causes a dramatic consequences comparable with those as losing password or pin code. This means that cryptographic identity of the user is lost. Then, for example, if user has no copy of PrK he get no access to his bank account. Moreover his cryptocurrencies are lost forever. If PrK is got into the wrong hands, e.g. into adversary hands, then it reveals a way to impersonate the user. Since user's PuK is known for everybody then adversary knows his key pair (PrK, Puk) and can forge his Digital Signature, decrypt messages, get access to the data available to the user (bank account or cryptocurrency account) and etc.
Let function relating key pair ($\mathbf{P r K}, \operatorname{Puk}$) be \boldsymbol{F}. Then in most cases of our study (if not declared opposite) this relation is expressed in the following way:

PuK=F(PrK).
In open cryptography according to Kerchoff principle function \boldsymbol{F} must be known to all users of cryptosystem while security is achieved by secrecy of cryptographic keys. To be more precise to compute PuK using function \boldsymbol{F} it must be defined using some parameters named as public parameters we denote by PP and color in blue that should be defined at the first step of cryptosystem creation. Since we will start from the cryptosystems based on discrete exponent function then these public parameters are

$$
\mathbf{P P}=(p, g) .
$$

Notice that relation represents very important cause and consequence relation we name as the direct relation: when given PrK we compute PuK.
Let us imagine that for given \boldsymbol{F} we can find the inverse relation to compute PrK when PuK is given. Abstractly this relation can be represented by the inverse function $\boldsymbol{F}^{\boldsymbol{- 1}}$. Then

$$
\operatorname{PrK}=\boldsymbol{F}^{-1}(\mathrm{PuK}) .
$$

In this case the secrecy of PrK is lost with all negative consequences above. To avoid these undesirable consequences function \boldsymbol{F} must be one-way function - OWF. In this case informally OWF is defined in the following way:

1. The computation of its direct value PuK when PrK and \boldsymbol{F} in are given is effective.
2. The computation of its inverse value PrK when PuK and \boldsymbol{F} are given is infeasible, meaning that to find $\boldsymbol{F}^{\mathbf{- 1}}$ is infeasible.
The one-wayness of \boldsymbol{F} allow us to relate person with his/her PrK through the PuK. If \boldsymbol{F} is 1-to-1, then the pair ($\operatorname{PrK}, \operatorname{Puk})$ is unique. So PrK could be reckoned as a unique secret parameter associated with certain person. This person can declare the possession or PrK by sharing his/her PuK as his public parameter related with PrK and and at the same time not revealing PrK.
So, every user in asymmetric cryptography possesses key pair ($\mathbf{P r K}$, PuK). Therefore, cryptosystems based on asymmetric cryptography are named as Public Key CryptoSystems (PKCS).
We will consider the same two traditional (canonical) actors in our study, namely Alice and Bob. Everybody is having the corresponding key pair $\left(\operatorname{PrK}_{\mathbf{A}}, \operatorname{PuK}_{A}\right)$ and $\left(\operatorname{PrK}_{\mathbf{B}}, \mathrm{PuK}_{\mathrm{B}}\right)$ and are exchanging with their public keys using open communication channel as indicated in figure below.

Asymmetric - Public Key Cryptography

Alice

Threaths of insecure ArK generation

$$
\mathcal{L}_{p}^{*}=\{1,2,3, \ldots, p-1\} ; * \bmod p
$$

PrK and YuK are related
PuL $=\mathbf{F}($ Pr $)$
F is one-way function Having PuK it is infeasible to find

$$
\text { PrK }=\mathrm{F}^{-1}(\text { PuK })
$$

$\mathrm{F}(x)=a$ is OWF , if:

1. It easy to compute a, when F and x are given.
2. It is infeasible compute x when F and a are given.
PrO $=x$ <-- randi $==>$ YuK $=a=g^{x} \bmod p$ Public Parameters PP $=(p, g)$

$$
\begin{aligned}
& p \sim 2^{2048} \Rightarrow|p| \cong 2048 \text { bits } \\
& p \sim 2^{28} \Rightarrow|p| \cong 28 \text { bits }
\end{aligned}
$$

Message m < p

Asymmetric Signing - Verification
$\operatorname{Sign}\left(\operatorname{PrK}_{\mathrm{A}}, \mathrm{h}\right)=\boldsymbol{\sigma}=(\mathrm{r}, \mathrm{s})$
$\mathbf{V}=\operatorname{Ver}\left(\right.$ PuK $\left._{A}, \boldsymbol{h}, \boldsymbol{\sigma}\right), \mathbf{V} \in\{$ True, False $\} \equiv\{1,0\}$

Asymmetric Encryption - Decryption
$\mathrm{c}=\mathrm{Enc}\left(\right.$ PuK $\left._{A}, \mathrm{~m}\right)$
$m=\operatorname{Dec}\left(\operatorname{PrK}_{\mathrm{A}}, \mathrm{c}\right)$

Bob

ElGamal Cryptosystem

1. Public Parameters generation $\mathrm{PP}=(p, g)$.

Generate strong prime number p: >> p=genstrongprime(28) \% strong prime of 28 bit length

Find a generator g in $\mathrm{Z}_{\mathrm{p}}{ }^{*}=\{1,2,3, \ldots, \mathrm{p}-1\}$ using condition.
Strong prime $\boldsymbol{p}=\mathbf{q} \boldsymbol{q}+1$, where \boldsymbol{q} is prime, then g is a generator of $\boldsymbol{Z}_{p} *$ ff $g^{q} \neq 1 \bmod p$ and $g^{2} \neq 1 \bmod p$.
Declare Public Parameters to the network PP = (peg);
>> 2^28-1
ans $=2.6844 \mathrm{e}+08$
>> int 64(2^28-1)
ans $=268435455$

PrK $=x<--$ randi $==>$ YuK $=a=g^{x} \bmod p$
$\mathrm{p}=268435019 ; \mathrm{g}=\mathbf{2 ;}$
$2^{\wedge} 28-1=268,435,455$
2^28-1= 268,435,455

El-Gamal E-Signature

The ElGamal signature scheme is a digital signature scheme which is based on the difficulty of computing discrete logarithms.
It was described by Tater ElGamal in 1984. The ElGamal signature algorithm is rarely used in practice. A variant developed at NSA and known as the Digital Signature Algorithm is much more widely used. The ElGamal signature scheme allows a third-party to confirm the authenticity of a message sent over an insecure channel.
From <https://en.wikipedia.org/wiki/EIGamal signature_scheme>

Signature creation for message $\boldsymbol{M \gg} \boldsymbol{p}$.

1. Compute decimal h-value $\boldsymbol{h}=\boldsymbol{H}(\boldsymbol{M}) ; \boldsymbol{h}<p$.
2. Generate $\gg \boldsymbol{i}=\operatorname{int} 64(\operatorname{randi}(p-1)) \%$ such that $\operatorname{gcd}(\boldsymbol{i}, p-1)=1$.
3. Compute $i^{-1} \bmod (p-1)$. You can use the function $\gg \mathrm{i} _\mathrm{m} 1=\operatorname{mulinv}(\mathrm{i}, \mathrm{p}-1) ;>\bmod \left(i * i _m 1, p-1\right)=1$.
4. Compute $r=g^{i} \bmod p$.
5. Compute $s=(\boldsymbol{h}-\boldsymbol{x} r) i^{-1} \bmod (p-1)$.
6. Signature on h-value \boldsymbol{h} is $\boldsymbol{\sigma}=(\boldsymbol{r}, \boldsymbol{s})$
$\boldsymbol{\operatorname { S i g n }}(x, \boldsymbol{h})=\boldsymbol{\sigma}=(\boldsymbol{r}, \boldsymbol{s})$.

$T_{x}=$ "nonce || gaslimit || gas Price || to || value || data"
$h=H\left(T_{x}\right) \longrightarrow \sigma=(r, s)=\operatorname{sign}(\operatorname{Prk}, h)$

1.Signature creation

To sign any finite message \boldsymbol{M} the signer performs the following steps using public parametres PP.

- Compute $\mathbf{h}=\mathbf{H}(M)$.
- Choose a random i such that $1<i<p-1$ and $\operatorname{gcd}(i, p-1)=1$.
- Compute $\boldsymbol{i}^{-1} \bmod (\mathrm{p}-1): \boldsymbol{i}^{-1} \bmod (\mathrm{p}-1)$ exists if $\operatorname{gcd}(\boldsymbol{i}, p-1)=1$, ie. \boldsymbol{i} and $\mathbf{p - 1}$ are relatively prime. k^{1} can be found using either Extended Eucididen algorithm t or Euler theorem or....
>> i_m1=mulinv($\mathbf{i}, \mathbf{p}-\mathbf{1}) \quad \% \mathbf{i}^{-1} \bmod (\mathbf{p}-1)$ computation.
- Compute $\mathbf{r}=\mathrm{g}^{\mathbf{i}} \bmod \mathbf{p}$
- Compute $\mathbf{S}=(\mathbf{h}-x r) \mathbf{i}^{-1} \bmod (\mathbf{p - 1})-->\mathbf{h}=x r+\mathbf{i s} \bmod (\mathbf{p - 1})$

Signature $\mathbf{\sigma}=(\mathbf{r}, \mathbf{S})$

$$
\left.\begin{array}{l}
s=(h-x \cdot r) \cdot i-1 \\
s \cdot i=(h-x \cdot r) \cdot i^{t} \cdot \dot{t} \\
h-x r=s \cdot i
\end{array} \quad h=x \cdot r+i-s\right\} \operatorname{mad} p
$$

2.Signature Verification

A signature $\boldsymbol{\sigma}=(\boldsymbol{r}, \boldsymbol{S})$ on message \boldsymbol{M} is verified using Public Parameters $\mathbf{P P}=(\mathbf{p}, \mathbf{g})$ and $\mathbf{P u K}_{\mathrm{A}}=\mathbf{a}$.

1. Bob computes $\mathbf{h}=\mathbf{H}(\mathbf{M})$.
2. Bob verifies if $\mathbf{1}<\mathbf{r}<\mathbf{p}-\mathbf{1}$ and $1<\mathbf{s}<\mathbf{p}-1$.
3. Bob calculates $V 1=g^{h} \bmod p$ and $V 2=a^{r} r^{s} \bmod p$, and verifies if $V 1=V 2$.

The verifier Bob accepts a signature if all conditions are satisfied during the signature creation and rejects it otherwise.

3. Correctness

The algorithm is correct in the sense that a signature generated with the signing algorithm will always be accepted by the verifier.
The signature generation implies
$\mathrm{h}=x r+\mathrm{is} \bmod (\mathrm{p}-1)$
Hence Fermat's little theorem implies that all operations in the exponent are computed mod (p-1)

$$
\begin{aligned}
& g^{h} \bmod p=g^{(x r+i s)} \bmod (p-1) \bmod p=g^{x r} g^{i s}=\left(g^{x}\right)^{r}\left(g^{i}\right)^{s}=a^{r} r^{s} \bmod p \\
& \quad(a)(r) \quad V 2
\end{aligned}
$$

$$
P P=(p, g)
$$

Lo: $z \leftarrow \operatorname{randi}(p-1) \quad\left\{\begin{array}{l}\text { Dear } B \text { mod } p \\ \text { and I am sending } \\ \text { and } \\ \text { yon my Yuk }=v\end{array}\right] \rightarrow$ Bu believes that

$$
\begin{array}{ll}
m=\text { 'Bob get ont' } \\
\sigma=\operatorname{sign}(z, m)=(r, s) \quad \text { B, } \sigma=(r, s) \quad \text { verifies the signateave } \sigma \\
& \text { on m using } P u k=V \text { and } \\
& \text { veii dilation bases. }
\end{array}
$$

$$
0=\operatorname{sign}(z, m)=(n, s)
$$

on m using $P u k=V$ and verification passes.

Before Bob verifies any signature with someone Bul he must be sure that this Puk is got from the certain person, leg. At bet not from anybody else.
It is achieved by creation of PKI-Public Key Ifrastructure when Trusted Third Party (TTP) such as Certification Authority is introduced. C_{A} is issuing Puke Certificates for any user by signing Pub when user proves his/her iolentity to CA.
At: Identification Card - ID

$$
\operatorname{Pr}_{A}=x ; \operatorname{PuK}_{A}=a .
$$

$I D h_{A}=H\left(P_{u} K_{A} \| D a t a_{A}\right)$
(
cort_{A}

$$
\begin{aligned}
& \operatorname{sign}\left(\operatorname{Pr} k_{e A}, h_{A}\right)=\sigma_{A} \\
& \operatorname{cert}_{A}=? \operatorname{Puk}_{A}\left\|\operatorname{Data}_{A}\right\| \sigma_{A}^{\prime}
\end{aligned}
$$

Is sure that certificate is true
Since CA is TTP \& S can download Pu CA using his browser with known to everyone link
http: II Certification Authority. Tusted. com
httpsill Certicom.com

$$
\begin{aligned}
& \gg p=\text { int 64(268435019) } \\
& p=268435019 \\
& \gg g=2 ; \\
& \gg x=\text { int64(randi(p-1)) } \\
& x=65770603 \\
& \gg \text { a=mod_exp(g,x,p) } \\
& a=232311991 \\
& \gg M=\text { Hello Bob...' } \\
& M=\text { Hello Bob... } \\
& \gg h=h d 28(M) \\
& h=150954921
\end{aligned}
$$

>> i $=$ int64(randi(p-1))
$i=201156232$
>> $\operatorname{gcd}(\mathrm{i}, \mathrm{p}-1)$
ans $=2$
>> i $=$ int $64($ randi $(p-1)$)
$\mathrm{i}=35395315$
$\gg \operatorname{gcd}(\mathrm{i}, \mathrm{p}-1)$
ans $=1$
>> i_m1=mulinv(i,p-1)
i_m1 = 192754179
$\gg \bmod \left({ }^{*}{ }^{*}\right.$ _m1,p-1)
ans $=1$

$$
\begin{aligned}
& \text { >> r=mod_exp(g,i,p) } \\
& r=172536234 \\
& \text { >> hmxr=mod(h-x*r,p-1) } \\
& h m x r=20262153 \\
& \text { >> s=mod(hmxr*i_m1,p-1) } \\
& s=44575091 \\
& \text { >> a_r=mod_exp(a,r,p) } \\
& \text { ar }=49998673 \\
& \text { >> r_s=mod_exp(r,s,p) } \\
& r_{-s}=111993804 \\
& \gg \text { Vt }=\bmod \left(a_{-} r^{*} r_{-} s, p\right) \\
& \text { Vt }=241198023
\end{aligned}
$$

Till this place

Asymmetric Encryption-Decryption: El-Gamal Encryption-Decryption

Let message \boldsymbol{m}^{\sim} needs to be encrypted, then it must be encoded in decimal number \boldsymbol{m} : $1<\boldsymbol{m}<\boldsymbol{p}$. E.g. $\boldsymbol{m}=111222$. Then $\boldsymbol{m} \bmod \boldsymbol{p}=\boldsymbol{m}$.
$A: \quad P_{u} K_{A}=a \quad B:$ is able to encrypt m to A : $m<p$

B: $i \leftarrow \operatorname{randi}\left(\mathscr{\chi}_{p}^{*}\right)$
$\left.\begin{array}{l}E=m \cdot a^{i} \bmod p \\ D=a^{i} \bmod p\end{array}\right\} c=(E, D) \longrightarrow \left\lvert\, \begin{aligned} & A: \text { is able to decrypt } \\ & C=(E, D) \text { using bet Pr K }\end{aligned}\right.$
$\left.D=g^{i} \bmod p\right\} c=(E, D) \longrightarrow c=(E, D)$ using bet $\operatorname{Pr} K_{A}=x$.
$(-x) \bmod (p-1)=(p-x) \bmod (p-1)=$
$=(p-1-x) \bmod (p-1)$

1. $D^{-x \bmod (p-1)} \bmod p$
2. $E \cdot D^{-x} \bmod p=m$

$$
\begin{aligned}
& (p-1) \bmod (p-1)=O \text { since } \\
& (-x) \bmod (p-1)=(p-1-x) \\
& D^{-x} \bmod (p-1)=D^{p-1-x} \bmod (p-1)
\end{aligned}
$$

$$
\gg D_{1} m x=m \operatorname{dod} \exp (D, p-1-x, p-1)
$$

$D^{-x} \bmod p$ computation using Fermat theorem:
If p is prime, then for any integer a holds $\boldsymbol{a}^{p-1}=\mathbf{1} \bmod p$.

$$
\begin{aligned}
& D^{p-1}=1 \bmod p \quad / \cdot D^{-x} \bmod (p-1) \bmod p \\
& D^{p-1} \cdot D^{-x}=1 \cdot D^{-x} \bmod p \Rightarrow D^{p-1-x}=D^{-x} \bmod p \\
& D^{-x} \bmod p=D^{p-1-x} \bmod p
\end{aligned}
$$

Correctness

$$
\begin{aligned}
& E_{n c}\left(P u K_{A}=a, i, m\right)=c=(E, D)=\left(E=m \cdot a^{i} \bmod p ; D=g^{i} \bmod p\right) \\
& \begin{array}{c}
\operatorname{Dec}\left(P r K_{A}=x, c\right)=E \cdot D^{-x} \bmod p=m \cdot a^{i} \cdot\left(g^{i}\right)^{-x} \bmod p= \\
=m \cdot\left(g^{x}\right)^{i} \cdot g^{-i x}=m \cdot g^{x i} \cdot g^{-i x}=m \cdot g^{x i}-i x \\
\bmod p=m \cdot g^{0} \bmod p= \\
=m \cdot 1 \bmod p=m \bmod p=m=11222
\end{array}
\end{aligned}
$$

since $m<P$

$$
a \quad=r r ı 1 \text { moa }=m \text { rood } p=r r s=111 \angle \angle L
$$

EeGamal encryption is probabilistic: encryption of the same message (m two times yields the different cuphertexts c_{1} and c_{2}.

1-st encryption:

$i_{1} \leftarrow \operatorname{randli}\left(\mathscr{L}_{p}^{*}\right) \quad i_{1} \neq i_{2}, \quad i_{2} \leftarrow \operatorname{rand} i\left(\mathscr{L}_{p}^{*}\right)$

Necessity of probabilistic encryption.

Encrypting the same message with textbook RSA always yields the same ciphertext, and so we actually obtain that any deterministic scheme must be insecure for multiple encryptions.
Tavern episode
Enigma
Authenticated Key Agreement Protocol using EIGamal Encryption and Signature.
Hybrid encryption for a large files combining asymmetric and symmetric encryption method.

Hybrid encryption. Let \boldsymbol{M} be a large finite length file, egg. of gigabytes length.
Then to encrypt this file using asymmetric encryption is extremely ineffective since we must split it into millions of parts having 2048 bit length and encrypt every part separately.
The solution can be found by using asymmetric encryption together with symmetric encryption, say AES-128.
It is named as hybrid encryption method.
For this purpose the Key Agreement Protocol (KAP) using asymmetric encryption for the same symmetric secret key \boldsymbol{k} agreement must be realized and encryption of \boldsymbol{M} realized by symmetric encryption method, say AES-128.

How to encrypt large data file M: Hybrid enc-dec method. A. Parties must agree on common symmetric secret key k. Lo for symmetric block cipher, egg. AES-128, 192,256 bits.
fl: $\operatorname{Pr} K_{A}=x ; P u K_{A}=a$.

$$
\operatorname{PuK}_{B}=b_{0}
$$

1) $k \longleftarrow \operatorname{randi}\left(2^{128}\right)$
$i_{k} \leftarrow \operatorname{randi}\left(2^{128}\right)$

$$
\operatorname{Enc}\left(\operatorname{PuK}_{B}=b, i_{k}, k\right)=c=(E, D)
$$

2) M-large file to be encrypted

$$
E_{k}(M)=A E S_{k}(M)=G
$$

3) Signs ciphertext C
3.1) $h=H(G)$
3.2) $\operatorname{Sign}\left(\operatorname{Pr} K_{A}=x, h\right)=\sigma=(r, s)$
$\beta: \operatorname{Pr} K_{B}=y ; \operatorname{Puk}_{B}=b$.

$$
\operatorname{PuK}_{A}=a_{0}
$$

1.1. Verify if $P_{u} K_{A}$ and Cert t_{A} are valid? 1.2. Vorify if σ on $h=H\left(C_{1}\right)$ is valid? $h^{\prime}=H(C)$
$\operatorname{Ver}\left(\operatorname{PuW}_{A}, \sigma, h^{\prime}\right)=$ True
2. $\operatorname{Dec}\left(\operatorname{Pr} K_{B}, c\right)=k$
3. $D_{k}(G)=A E S_{k}(G)=M$.

A was using so called encrypt-and-sign $(E-\&-S)$ paradigm. (E-\&-S)paradigm is recomended to prevent so called choosen Ciphertext Attacks - CCA: it is most strong attack but most complex in realization.

Till this place

